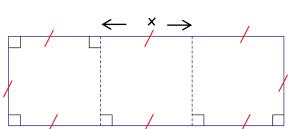

Exercice 1: (3 points)


Les figures ci-dessous ont toutes une aire de 8 cm².

Donner la valeur exacte de x en cm, dans chacun des cas.

(1)

(2)

Exercice 2: au brevet (4 points)

On donne x =
$$\sqrt{72}$$
 et y = $\sqrt{98}$

- a) Ecrire x et y sous la forme $a\sqrt{b}$ (a et b entiers, a plus grand entier possible).
- b) Ecrire sous la forme la plus simple possible $x^2 y^2$ et x + y

Exercice 3: (3 points)

Toutes les longueurs sont données en centimètres.

ABC est un triangle rectangle en A tel que :

AB =
$$2\sqrt{7}$$
 et AC = $3\sqrt{5}$.

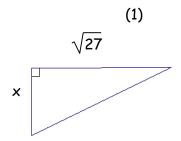
- 1) Calculer la valeur exacte de la longueur BC.
- 2) En déduire la valeur exacte du périmètre p de ce triangle.

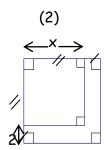
Exercice 4: (7 points)

On donne E = (x - 2)(7 - 3x) - (4 - x)(7 - 3x)

- 1) Développer E.
- 2) Factoriser E.
- 3) Résoudre l'équation (x 3)(3x 7) = 0En déduire les solutions de l'équation E = 0?
- 4) Résoudre l'équation E = 42.

Exercice 5: Maths in english (3 points)


The three angles of a triangle are a° , $(a + 15)^{\circ}$, $(a + 45)^{\circ}$.


Find the value of a.

Exercice 1 : (3 points)

Les figures ci-dessous ont toutes une aire de 27 cm².

Donner la valeur exacte de x en cm, dans chacun des cas.

Exercice 2 : au brevet (4 points)

On donne $x = \sqrt{75}$ et $y = \sqrt{108}$

- a) Ecrire x et y sous la forme $a\sqrt{b}$ (a et b entiers, a plus grand entier possible).
- b) Ecrire sous la forme la plus simple possible $x^2 y^2$ et x + y

Exercice 3: (3 points)

Toutes les longueurs sont données en centimètres.

ABC est un triangle tel que AB = $\sqrt{10}$ et BC = $3\sqrt{2}$

Calculer la valeur exacte de la longueur AC dans chacun des cas suivants :

- 1) ABC est rectangle en A.
- 2) ABC est rectangle en B.

Exercice 4: (7 points)

On donne $F = (3x + 4)^2 - 3(9x^2 - 16)$

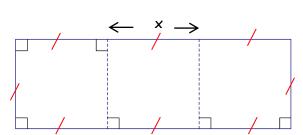
- 1) Développer F.
- 2) Factoriser F.
- 3) Résoudre l'équation (3x 8)(3x + 4) = 0En déduire les solutions de l'équation F = 0?
- 4) Résoudre l'équation F = 64.

 $\underline{\textbf{Exercice 5}}$: Maths in english (3 points)

The three angles of a triangle are a° , $(a + 10)^{\circ}$, $(a + 20)^{\circ}$.

Find the value of a.

Exercice 1: (3 points)


Les figures ci-dessous ont toutes une aire de 8 cm².

Donner la valeur exacte de x en cm, dans chacun des cas.

(1)

(2)

(1)
$$x^2 = 8$$
 $\Rightarrow x = \sqrt{8}$ ou $x = -\sqrt{8}$ $\Rightarrow x = 2\sqrt{2}$ (seule la solution positive convient)

(4)
$$3x^2 = 8 \implies x^2 = \frac{8}{3}$$
 $\implies x = -\sqrt{\frac{8}{3}}$ ou $x = \sqrt{\frac{8}{3}} \implies x = \frac{\sqrt{8}}{\sqrt{3}} = \frac{2\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{6}}{3}$ (seule la solution

positive convient).

Exercice 2: au brevet (4 points)

On donne $x = \sqrt{72}$ et $y = \sqrt{98}$

- a) Ecrire x et y sous la forme $a\sqrt{b}$ (a et b entiers, a plus grand entier possible).
- b) Ecrire sous la forme la plus simple possible $x^2 y^2$ et x + y

a)
$$x = \sqrt{36x2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2}$$
 $y = \sqrt{49 \times 2} = \sqrt{49} \times \sqrt{2} = 7\sqrt{2}$
b) $x^2 - y^2 = 72 - 98 = -26$ $x + y = 13\sqrt{2}$

Exercice 3 : (3 points)

Toutes les longueurs sont données en centimètres.

ABC est un triangle rectangle en A tel que :

AB =
$$2\sqrt{7}$$
 et AC = $3\sqrt{5}$.

- 1) Calculer la valeur exacte de la longueur BC.
- 2) En déduire la valeur exacte du périmètre p de ce triangle.
- 1) Le triangle ABC étant rectangle en A, on peut appliquer le théorème de Pythagore : $BC^2 = AB^2 + AC^2$.

Soit:
$$BC^2 = (2\sqrt{7})^2 + (3\sqrt{5})^2 = 4\times7 + 9\times5 = 28 + 45 = 73$$

Donc $BC = \sqrt{73}$

2) p = AB + AC + BC =
$$2\sqrt{7}$$
 + $3\sqrt{5}$ + $\sqrt{73}$

Exercice 4: (7 points)

On donne E = (x - 2)(7 - 3x) - (4 - x)(7 - 3x)

- 1) Développer E.
- 2) Factoriser E.
- 3) Résoudre l'équation (x 3)(3x 7) = 0En déduire les solutions de l'équation E = 0?
- 4) Résoudre l'équation E = 42.

1)
$$E = 7x - 3x^{2} - 14 + 6x - (28 - 12x - 7x + 3x^{2})$$

 $E = -3x^{2} + 13x - 14 - (28 - 19x + 3x^{2})$
 $E = -3x^{2} + 13x - 14 - 28 + 19x - 3x^{2}$
 $E = -6x^{2} + 32x - 42$

2)
$$E = (7 - 3x)[(x - 2) - (4 - x)]$$

 $E = (7 - 3x)(x - 2 - 4 + x)$
 $E = (7 - 3x)(2x - 6)$
 $E = 2(7 - 3x)(x - 3)$

3)
$$(x-3)(3x-7)=0$$

Un produit de facteurs est nul si au moins un facteur est nul.

$$x - 3 = 0$$
 ou $3x - 7 = 0$
 $x - 3 + 3 = 0 + 3$ ou $3x - 7 + 7 = 0 + 7$
 $x = 3$ ou $3x = 7$
 $x = 3$ ou $\frac{3x}{3} = \frac{7}{3}$
 $x = 3$ ou $x = \frac{7}{3}$

Les solutions de l'équation (x - 3)(3x - 7) = 0 sont $\frac{7}{3}$ et 3.

$$E = 0 \Rightarrow 2(7 - 3x)(x - 3) = 0 \Rightarrow (x - 3)(3x - 7) = 0$$

Donc ces deux équations équivalentes ont les mêmes solutions.

Les solutions de l'équation E = 0 sont donc 3 et $\frac{7}{3}$.

4)
$$E = -42$$
 $\Rightarrow -6x^2 + 32x - 42 = -42$
 $\Rightarrow -6x^2 + 32x = 0$
 $\Rightarrow -2x(3x - 16) = 0$
 $\Rightarrow -2x = 0 \text{ ou } 3x - 16 = 0$
 $\Rightarrow x = 0 \text{ ou } 3x - 16 + 16 = 0 + 16$
 $\Rightarrow x = 0 \text{ ou } 3x = 16$
 $\Rightarrow x = 0 \text{ ou } \frac{3x}{3} = \frac{16}{3}$
 $\Rightarrow x = 0 \text{ ou } x = \frac{16}{3}$

Les solutions de l'équation E = -42 sont donc 0 et $\frac{16}{3}$.

Exercice 5 : Maths in english (3 points)

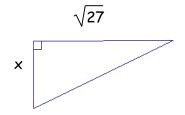
The three angles of a triangle are a° , $(a + 15)^{\circ}$, $(a + 45)^{\circ}$.

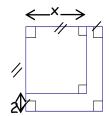
Find the value of a.

The sum of the angles of a triangle is equal to 180° .

Thus,
$$a + a + 15 + a + 45 = 180^{\circ}$$

$$\frac{3a}{3} = \frac{120}{3}$$


$$a = 40^{\circ}$$


The value of a is 40°.

Exercice 1: (3 points)

Les figures ci-dessous ont toutes une aire de 27 cm².

Donner la valeur exacte de x en cm, dans chacun des cas.

(1)
$$\frac{x \times \sqrt{27}}{2} = 27 \implies x \times \sqrt{27} = 27 \times 2 \implies x = \frac{54}{\sqrt{27}} = \frac{54}{3\sqrt{3}} = \frac{18}{\sqrt{3}} = \frac{18\sqrt{3}}{3} = 6\sqrt{3}$$
(2) $(x+2)^2 = 27 \implies x + 2 = -\sqrt{27}$ ou $x + 2 = \sqrt{27} \implies x = 3\sqrt{3} - 2$ (seule la valeur positive convient)

Exercice 2: au brevet (4 points)

On donne $x = \sqrt{75}$ et $y = \sqrt{108}$

- a) Ecrire x et y sous la forme $a\sqrt{b}$ (a et b entiers, a plus grand entier possible).
- b) Ecrire sous la forme la plus simple possible $x^2 y^2$ et x + y

a)
$$x = \sqrt{25 \times 3} = 5\sqrt{3}$$
 $y = \sqrt{36 \times 3} = 6\sqrt{3}$
b) $x^2 - y^2 = 75 - 108 = -33$ $x + y = 11\sqrt{3}$

Exercice 3: (3 points)

Toutes les longueurs sont données en centimètres.

ABC est un triangle tel que AB = $\sqrt{10}$ et BC = $3\sqrt{2}$

Calculer la valeur exacte de la longueur ${\it AC}$ dans chacun des cas suivants :

- 1) ABC est rectangle en A.
- 2) ABC est rectangle en B.
- 1) Le triangle ABC étant rectangle en A, on peut appliquer le théorème de Pythagore : $BC^2 = AB^2 + AC^2$

$$(3\sqrt{2})^2 = (\sqrt{10})^2 + AC^2$$

 $AC^2 = 18 - 10 = 8$
 $AC = \sqrt{8} = 2\sqrt{2}$

2) Le triangle ABC étant rectangle en B, on peut appliquer le théorème de Pythagore : $AC^2 = AB^2 + BC^2$

$$AC^2 = (3\sqrt{2})^2 + (\sqrt{10})^2$$

 $AC^2 = 18 + 10 = 28$
 $AC = \sqrt{28} = 2\sqrt{7}$

Exercice 4: (7 points)

On donne $F = (3x + 4)^2 - 3(9x^2 - 16)$

- 1) Développer F.
- 2) Factoriser F.
- 3) Résoudre l'équation (3x 8)(3x + 4) = 0En déduire les solutions de l'équation F = 0?
- 4) Résoudre l'équation F = 64.

1)
$$F = (3x)^2 + 2 \times 3x \times 4 + 4^2 - 27x^2 + 48$$

 $F = 9x^2 + 24x + 16 - 27x^2 + 48$
 $F = -18x^2 + 24x + 64$

$$F = -18x^{2} + 24x + 64$$
2)
$$F = (3x + 4)(3x + 4) - 3((3x)^{2} - 4^{2})$$

$$F = (3x + 4)(3x + 4) - 3(3x + 4)(3x - 4)$$

$$F = (3x + 4)[(3x + 4) - 3(3x - 4)]$$

$$F = (3x + 4)(3x + 4 - 9x + 12)$$

$$F = (3x + 4)(-6x + 16)$$

$$F = -2(3x + 4)(3x - 8)$$

3) Un produit de facteurs est nul si au moins un des facteurs est nul.

$$(3x - 8)(3x + 4) = 0$$

 $3x - 8 = 0$ ou $3x + 4 = 0$
 $3x - 8 + 8 = 0 + 8$ ou $3x + 4 - 4 = 0 - 4$
 $3x = 8$ ou $3x = -4$
 $\frac{3x}{3} = \frac{8}{3}$ ou $\frac{3x}{3} = -\frac{4}{3}$
 $x = \frac{8}{3}$ ou $x = -\frac{4}{3}$

Les solutions de l'équation (3x - 8)(3x + 4) = 0 sont $-\frac{4}{3}$ et $\frac{8}{3}$.

$$F = 0 \rightarrow -2(3x + 4)(3x - 8) = 0 \rightarrow (3x + 4)(3x - 8) = 0$$

Les solutions de l'équation F = 0 sont aussi $-\frac{4}{3}$ et $\frac{8}{3}$.

4)
$$F = 64$$

 $-18x^2 + 24x + 64 = 64$
 $-18x^2 + 24x = 0$
 $-6x(3x - 4) = 0$
 $-6x = 0$ ou $3x - 4 = 0$
 $\frac{-6x}{-6} = \frac{0}{-6}$ ou $3x - 4 + 4 = 0 + 4$
 $x = 0$ ou $3x = 4$
 $x = 0$ ou $\frac{3x}{3} = \frac{4}{3}$
 $x = 0$ ou $x = \frac{4}{3}$

Les solutions de l'équation F = 0 sont 0 et $\frac{4}{3}$.

Contrôle : racines carrées

CORRECTION

Exercice 5: Maths in english (3 points)

The three angles of a triangle are a° , $(a + 10)^{\circ}$, $(a + 20)^{\circ}$.

Find the value of a.

The sum of the angles of a triangle is equal to $180^{\circ}.3$

Thus,
$$a + a + 10 + a + 20 = 180^{\circ}$$

$$3a + 30 = 180$$

$$\frac{3a}{3} = \frac{150}{3}$$

The value of a is 50°.